
C Interfaces and Implementations:
Techniques for Creating Reusable Software

By David R. Hanson

C Interfaces and Implementations: Techniques for Creating Reusable
Software By David R. Hanson

creating reusable software modules; they are the building blocks of large, reliable
applications. Unlike some modern object-oriented languages, C provides little
linguistic support or motivation for creating reusable application programming
interfaces (APIs). While most C programmers use APIs and the libraries that
implement them in almost every application they write, relatively few
programmers create and disseminate new, widely applicable APIs. C Interfaces
and Implementations shows how to create reusable APIs using interface-based
design, a language-independent methodology that separates interfaces from their
implementations. This methodology is explained by example. The author
describes in detail 24 interfaces and their implementations, providing the reader
with a thorough understanding of this design approach. Features of C Interfaces
and Implementations: * Concise interface descriptions that comprise a reference
manual for programmers interested in using the interfaces. * A guided tour of the
code that implements each chapters interface tp help those modifying or
extending an interface or designing related interfaces. * In-depth focus on
algorithm engineering: how to packag

 Download C Interfaces and Implementations: Techniques for C ...pdf

 Read Online C Interfaces and Implementations: Techniques for ...pdf

http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413

C Interfaces and Implementations: Techniques for Creating
Reusable Software

By David R. Hanson

C Interfaces and Implementations: Techniques for Creating Reusable Software By David R. Hanson

creating reusable software modules; they are the building blocks of large, reliable applications. Unlike some
modern object-oriented languages, C provides little linguistic support or motivation for creating reusable
application programming interfaces (APIs). While most C programmers use APIs and the libraries that
implement them in almost every application they write, relatively few programmers create and disseminate
new, widely applicable APIs. C Interfaces and Implementations shows how to create reusable APIs using
interface-based design, a language-independent methodology that separates interfaces from their
implementations. This methodology is explained by example. The author describes in detail 24 interfaces
and their implementations, providing the reader with a thorough understanding of this design approach.
Features of C Interfaces and Implementations: * Concise interface descriptions that comprise a reference
manual for programmers interested in using the interfaces. * A guided tour of the code that implements each
chapters interface tp help those modifying or extending an interface or designing related interfaces. * In-
depth focus on algorithm engineering: how to packag

C Interfaces and Implementations: Techniques for Creating Reusable Software By David R. Hanson
Bibliography

Rank: #104964 in Books●

Brand: David R Hanson●

Published on: 1996-08-30●

Original language: English●

Number of items: 1●

Dimensions: 9.10" h x 1.30" w x 7.30" l, 2.03 pounds●

Binding: Paperback●

544 pages●

 Download C Interfaces and Implementations: Techniques for C ...pdf

 Read Online C Interfaces and Implementations: Techniques for ...pdf

http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413
http://mbooknom.men/go/best.php?id=0201498413

Download and Read Free Online C Interfaces and Implementations: Techniques for Creating
Reusable Software By David R. Hanson

Editorial Review

From the Back Cover

Every programmer and software project manager must master the art of creating reusable software modules;
they are the building blocks of large, reliable applications. Unlike some modern object-oriented languages, C
provides little linguistic support or motivation for creating reusable application programming interfaces
(APIs). While most C programmers use APIs and the libraries that implement them in almost every
application they write, relatively few programmers create and disseminate new, widely applicable APIs. C
Interfaces and Implementations shows how to create reusable APIs using interface-based design, a
language-independent methodology that separates interfaces from their implementations. This methodology
is explained by example. The author describes in detail 24 interfaces and their implementations, providing
the reader with a thorough understanding of this design approach.

Features of C Interfaces and Implementations:

Concise interface descriptions that comprise a reference manual for programmers interested in using the●

interfaces.
A guided tour of the code that implements each chapter's interface tp help those modifying or extending an●

interface or designing related interfaces.
In-depth focus on "algorithm engineering:" how to package data structures and related algorithms into●

reusable modules.
Source code for 24 APIs and 8 sample applications is examined, with each presented as a "literate●

program" in which a thorough explanation is interleaved with the source code.
Rarely documented C programming tricks-of-the-trade.●

Convenient access to all source code in the book via the World Wide Web at●

http://www.cs.princeton.edu/software/cii/

0201498413B04062001

About the Author

David R. Hanson is a Professor of Computer Science at Princeton University with more than 20 years of
research experience in programming languages. He has conducted research in conjunction with Bell
Laboratories and is the co-author of lcc, a production quality, research compiler for the C language that is
popular with the Unix community. lcc is presented and analyzed in the book A Retargetable C Compiler:
Design and Implementation , by Christopher Fraser and David Hanson (c) 1995, Addison-Wesley.

0201498413AB04062001

Excerpt. © Reprinted by permission. All rights reserved.

Programmers are inundated with information about application programming interfaces, or APIs. Yet, while
most programmers use APIs and the libraries that implement them in almost every application they write,
relatively few create and disemminate new, widely applicable, APIs. Indeed, programmers seem to prefer to
"roll their own" instead of searching for a library that might meet their needs, perhaps because it is easier to
write application-specific code than to craft well-designed APIs.

I'm as guilty as the next programmer: lcc, a compiler for ANSI/ISO C written by Chris Fraser and myself,
was built from the ground up. (lcc is described in A Retargetable C Compiler: Design and
Implementation, Addison-Wesley, 1995.) A compiler exemplifies the kind of application for which it is
possible to use standard interfaces and to create interfaces that are useful elsewhere. Examples include
interfaces for memory management, string and symbol tables, and list manipulation. But lcc uses only a few
routines from the standard C library, and almost none of its code can be used directly in other applications.

This book advocates a design methodology based on interfaces and their implementations, and it illustrates
this methodology by describing 24 interfaces and their implementations in detail. These interfaces span a
large part of the computing spectrum and include data structures, arithmetic, string processing, and
concurrent programming. The implementations aren't toys - they're designed for use in production code. As
described below, the source code is freely available.

There's little support in the C programming language for the interface-based design methodology. Object-
oriented languages, like C++ and Modula-3, have language features that encourage the separation of an
interface from its implementation. Interface-based design is independent of any particular language, but it
does require more programmer willpower and vigilance in languages like C, because it's too easy to pollute
an interface with implicit knowledge of its implementation and vice versa.

Once mastered, however, interface-based design can speed development time by building upon a foundation
of general-purpose interfaces that can serve many applications. The foundation class libraries in some C++
environments are examples of this effect. Increased reuse of existing software - libraries of interface
implementations - reduces initial development costs. It also reduces maintenance costs, because more of an
application rests on well-tested implementations of general-purpose interfaces.

The 24 interfaces come from several sources, and all have been revised for this book. Some of the interfaces
for data structures - abstract data types - originated in lcc code, and in implementations of the Icon
programming language done in the late 1970s and early 1980s (see R. E. Griswold and M. T. Griswold, The
Icon Programming Language, Prentice Hall, 1990). Others come from the published work of other
programmers; the "Further Reading" sections at the end of each chapter give the details.

Some of the interfaces are for data structures, but this is not a data structures book, per se. The emphasis is
more on algorithm engineering - packaging data structures for general use in applications - than on data-
structure algorithms. Good interface design does rely on appropriate data structures and efficient algorithms,
however, so this book complements traditional data structure and algorithms texts like Robert Sedgewick's
Algorithms in C (Addison-Wesley, 1990).

Most chapters describe one interface and its implementation; a few describe related interfaces. The
"Interface" section in each chapter gives a concise, detailed description of the interface alone. For
programmers interested only in the interfaces, these sections form a reference manual. A few chapters
include "Example" sections, which illustrate the use of one or more interfaces in simple applications.

The "Implementation" section in each chapter is a detailed tour of the code that implements the chapter's
interface. In a few cases, more than one implementation for the same interface is described, which illustrates
an advantage of interface-based design. These sections are most useful for those modifying or extending an

interface or designing related interfaces. Many of the exercises explore design and implementation
alternatives. It should not be necessary to read an "Implementation" section in order to understand how to
use an interface.

The interfaces, examples, and implementations are presented as literate programs; that is, the source code is
interleaved with its explanation in an order that best suits understanding the code. The code is extracted
automatically from the text files for this book and assembled into the order dictated by the C programming
language. Other book-length examples of literate programming in C include A Retargetable C Compiler
and The Stanford GraphBase: A Platform for Combinatorial Computing by D. E. Knuth (Addison-
Wesley, 1993).

Organization
The material in this book falls into the following broad categories:

Most readers will benefit from reading all of Chapters 1 through 4, because these chapters form the
framework for the rest of the book. The remaining chapters can be read in any order, although some of the
later chapters refer to their predecessors.

Chapter 1 covers literate programming and issues of programming style and efficiency. Chapter 2 motivates
and describes the interface-based design methodology, defines the relevant terminology, and tours two
simple interfaces and their implementations. Chapter 3 describes the prototypical Atom interface, which is
the simplest production-quality interface in this book. Chapter 4 introduces exceptions and assertions, which
are used in every interface. Chapters 5 and 6 describe the memory management interfaces used by almost all
the implementations. The rest of the chapters each describe an interface and its implementation.

Instructional Use
I assume that readers understand C at the level covered in undergraduate introductory programming courses,
and have a working understanding of fundamental data structures at the level presented in texts like
Algorithms in C. At Princeton, the material in this book is used in systems programming courses from the
sophomore to first-year graduate levels. Many of the interfaces use advanced C programming techniques,
such as opaque pointers and pointers to pointers, and thus serve as nontrivial examples of those techniques,
which are useful in systems programming and data structure courses.

This book can be used for courses in several ways, the simplest being in project-oriented courses. In a
compiler course, for example, students often build a compiler for a toy language. Substantial projects are
common in graphics courses as well. Many of the interfaces can simplify the projects in these kinds of
courses by eliminating some of the grunt programming needed to get such projects off the ground. This
usage helps students realize the enormous savings that reuse can bring to a project, and it often induces them
to try interface-based design for their own parts of the project. This latter effect is particularly valuable in
team projects, because that's a way of life in the "real world."

Interfaces and implementations are the focus of Princeton's sophomore-level systems programming course.
Assignments require students to be interface clients, implementors, and designers. In one assignment, for
example, I distribute Section 8.1's Table interface, the object code for its implementation, and the
specifications for Section 8.2's word frequency program, wf. The students must implement wf using only my
object code for Table. In the next assignment, they get the object code for wf, and they must implement
Table. Sometimes, I reverse these assignments, but both orders are eye-openers for most students. They are
unaccustomed to having only object code for major parts of their program, and these assignments are usually
their first exposure to the semiformal notation used in interfaces and program specification.

Initial assignments also introduce checked runtime errors and assertions as integral parts of interface

specifications. Again, it takes a few assignments before students begin to appreciate the value of these
concepts. I forbid "unannounced" crashes; that is, crashes that are not announced by an assertion failure
diagnostic. Programs that crash get a grade of zero. This penalty may seem unduly harsh, but it gets the
students' attention. They also gain an appreciation of the advantages of safe languages, like ML and Modula-
3, in which unannounced crashes are impossible. (This grading policy is less harsh than it sounds, because in
multipart assignments, only the offending part is penalized, and different assignments have different weights.
I've given many zeros, but none has ever caused a course grade to shift by a whole point.)

Once students have a few interfaces under their belts, later assignments ask them to design new interfaces
and to live with their design choices. For example, one of Andrew Appel's favorite assignments is a primality
testing program. Students work in groups to design the interfaces for the arbitrary-precision arithmetic that is
needed for this assignment. The results are similar to the interfaces described in Chapters 17 through 19.
Different groups design interfaces, and a postassignment comparison of these interfaces, in which the groups
critique one anothers' work, is always quite revealing. Kai Li accomplishes similar goals with a semester-
long project that builds an X-based editor using the Tcl/Tk system (J. K. Ousterhout, Tcl and the Tk
Toolkit, Addison-Wesley, 1994).

0201498413P04062001

Users Review

From reader reviews:

Cory Denton:

Book is to be different for every single grade. Book for children until eventually adult are different content.
We all know that that book is very important for all of us. The book C Interfaces and Implementations:
Techniques for Creating Reusable Software had been making you to know about other information and of
course you can take more information. It is rather advantages for you. The reserve C Interfaces and
Implementations: Techniques for Creating Reusable Software is not only giving you more new information
but also to become your friend when you sense bored. You can spend your spend time to read your book. Try
to make relationship with all the book C Interfaces and Implementations: Techniques for Creating Reusable
Software. You never truly feel lose out for everything should you read some books.

Charles Montiel:

The event that you get from C Interfaces and Implementations: Techniques for Creating Reusable Software
may be the more deep you excavating the information that hide into the words the more you get interested in
reading it. It doesn't mean that this book is hard to comprehend but C Interfaces and Implementations:
Techniques for Creating Reusable Software giving you enjoyment feeling of reading. The writer conveys
their point in specific way that can be understood through anyone who read this because the author of this
guide is well-known enough. This particular book also makes your vocabulary increase well. It is therefore
easy to understand then can go along, both in printed or e-book style are available. We suggest you for
having that C Interfaces and Implementations: Techniques for Creating Reusable Software instantly.

Anna Baron:

This book untitled C Interfaces and Implementations: Techniques for Creating Reusable Software to be one
of several books that best seller in this year, that is because when you read this e-book you can get a lot of
benefit in it. You will easily to buy this kind of book in the book retail outlet or you can order it through
online. The publisher of the book sells the e-book too. It makes you easier to read this book, because you can
read this book in your Cell phone. So there is no reason for you to past this book from your list.

Edith Manning:

The e-book untitled C Interfaces and Implementations: Techniques for Creating Reusable Software is the e-
book that recommended to you to see. You can see the quality of the guide content that will be shown to an
individual. The language that author use to explained their ideas are easily to understand. The article author
was did a lot of investigation when write the book, to ensure the information that they share to you
personally is absolutely accurate. You also could possibly get the e-book of C Interfaces and
Implementations: Techniques for Creating Reusable Software from the publisher to make you much more
enjoy free time.

Download and Read Online C Interfaces and Implementations:
Techniques for Creating Reusable Software By David R. Hanson
#Z3OK7I2W1H4

Read C Interfaces and Implementations: Techniques for Creating
Reusable Software By David R. Hanson for online ebook

C Interfaces and Implementations: Techniques for Creating Reusable Software By David R. Hanson Free
PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books,
books online, book reviews epub, read books online, books to read online, online library, greatbooks to read,
PDF best books to read, top books to read C Interfaces and Implementations: Techniques for Creating
Reusable Software By David R. Hanson books to read online.

Online C Interfaces and Implementations: Techniques for Creating Reusable Software
By David R. Hanson ebook PDF download

C Interfaces and Implementations: Techniques for Creating Reusable Software By David R. Hanson
Doc

C Interfaces and Implementations: Techniques for Creating Reusable Software By David R. Hanson Mobipocket

C Interfaces and Implementations: Techniques for Creating Reusable Software By David R. Hanson EPub

